skip to main content


Search for: All records

Creators/Authors contains: "Jencso, Kelsey G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Quantifying the interconnected impacts of climate change and irrigation on surface water flows is critical for the proactive management of our water resources and the ecosystem services they provide. Changes in streamflow across the Western U.S. have generally been attributed to an aridifying climate, but in many basins flows can also be highly impacted by irrigation. We developed a 35-year dataset consisting of streamflow, climate, irrigated area, and crop water use to quantify the effects of both climate change and irrigation water use on streamflow across 221 basins in the Colorado, Columbia, and Missouri River systems. We demonstrate that flows have been altered beyond observed climate-related changes and that many of these changes are attributable to irrigation. Further, our results indicate that increases in irrigation water use have occurred over much of the study area, a finding that contradicts government-reported irrigation statistics. Increases in crop consumption have enhanced fall and winter flows in some portions of the Upper Missouri and northern Columbia River basins, and have exacerbated climate change-induced flow declines in parts of the Colorado basin. We classify each basin’s water resources sustainability in terms of flow and irrigation trends and link irrigation-induced flow changes to irrigation infrastructure modernization and differences in basin physiographic setting. These results provide a basis for determining where modern irrigation systems benefit basin water supply, and where less efficient systems contribute to return flows and relieve ecological stress.

     
    more » « less
  2. Daily stream flow and groundwater dynamics in forested subalpine catchments during spring are to a large extent controlled by hydrological processes that respond to the day-night energy cycle. Diurnal snowmelt and transpiration events combine to induce pressure variations in the soil water storage that are propagated to the stream. In headwater catchments these pressure variations can account for a significant amount of the total pressure in the system and control the magnitude, duration, and timing of stream inflow pulses at daily scales, especially in low flow systems. Changes in the radiative balance at the top of the snowpack can alter the diurnal hydrologic dynamics of the hillslope-stream system with potential ecological and management consequences.

    We present a detailed hourly dataset of atmospheric, hillslope, and streamflow measurements collected during one melt season from a semi-alpine headwater catchment in western Montana, US. We use this dataset to investigate the timing, pattern, and linkages among snowmelt-dominated hydrologic processes and assess the role of the snowpack, transpiration, and hillslopes in mediating daily movements of water from the top of the snowpack to local stream systems. We found that the amount of snowpack cold content accumulated during the night, which must be overcome every morning before snowmelt resumes, delayed water recharge inputs by up to 3 hours early in the melt season. These delays were further exacerbated by multi-day storms (cold fronts), which resulted in significant depletions in the soil and stream storages. We also found that both diurnal snowmelt and transpiration signals are present in the diurnal soil and stream storage fluctuations, although the individual contributions of these processes is difficult to discern. Our analysis showed that the hydrologic response of the snow-hillslope-stream system is highly sensitive to atmospheric drivers at hourly scales, and that variations in atmospheric energy inputs or other stresses are quickly transmitted and alter the intensity, duration and timing of snowmelt pulses and soil water extractions by vegetation, which ultimately drive variations in soil and stream water pressures. 
    more » « less
  3. Abstract. During spring, daily stream flow and groundwater dynamics in forested subalpine catchmentsare to a large extent controlled by hydrological processes thatrespond to the day–night energy cycle. Diurnal snowmelt and transpirationevents combine to induce pressure variations in the soil water storage thatare propagated to the stream. In headwater catchments these pressurevariations can account for a significant amount of the total pressure in thesystem and control the magnitude, duration, and timing of stream inflowpulses at daily scales, especially in low-flow systems. Changes in theradiative balance at the top of the snowpack can alter the diurnal hydrologicdynamics of the hillslope–stream system, with potential ecological andmanagement consequences.

    We present a detailed hourly dataset of atmospheric, hillslope, andstreamflow measurements collected during one melt season from a semi-alpineheadwater catchment in western Montana, US. We use this dataset toinvestigate the timing, pattern, and linkages among snowmelt-dominatedhydrologic processes and assess the role of the snowpack, transpiration, andhillslopes in mediating daily movements of water from the top of the snowpackto local stream systems. We found that the amount of snowpack cold contentaccumulated during the night, which must be overcome every morning beforesnowmelt resumes, delayed water recharge inputs by up to 3h early in themelt season. These delays were further exacerbated by multi-day storms (coldfronts), which resulted in significant depletions in the soil and streamstorages. We also found that both diurnal snowmelt and transpiration signalsare present in the diurnal soil and stream storage fluctuations, although theindividual contributions of these processes are difficult to discern. Ouranalysis showed that the hydrologic response of the snow–hillslope–streamsystem is highly sensitive to atmospheric drivers at hourly scales and thatvariations in atmospheric energy inputs or other stresses are quicklytransmitted and alter the intensity, duration, and timing of snowmelt pulsesand soil water extractions by vegetation, which ultimately drive variationsin soil and stream water pressures.

     
    more » « less
  4. Abstract

    Catchment hydrometeorology and the organization of shallow subsurface flow are key drivers of active contributing areas and streamflow generation. However, understanding how the climatic water balance and complex topography contribute to these processes from hillslope to catchment scales remains difficult. We compared time series of vapor pressure deficits and soil moisture to the climatic water balance and topographic variables across six zero‐order catchments in the Lubrecht Experimental Forest (Montana, USA). We then evaluated how local hydrometeorology (volumetric water content and atmospheric vapor pressure deficit) affected the spatial occurrence of shallow subsurface flow. Generalized linear mixed model analysis revealed significant, temporally stable (monthly and seasonal average) patterns of hydrometeorology that can be predicted by the topographic wetness index and the dynamic climatic water deficit (CWD = potential evapotranspiration − actual evapotranspiration). Intracatchment patterns were significantly correlated to the topographic wetness index, while intercatchment patterns were correlated to spatiotemporal variance in the CWD during each time period. Spatial patterns of shallow subsurface flow were related to the hydrometeorological conditions of the site. We observed persistent shallow subsurface flow in convergent hillslope positions, except when a catchment was positioned in locations with high CWDs (low elevations and southerly aspects). Alternatively, we observed persistent subsurface flow across all hillslope positions (even 70‐m upslope from the hollow) when catchments were positioned in locations with especially low CWDs (northerly aspects and high elevations). These results highlight the importance of considering the superposition of the catchment‐scale climatic water balance and hillslope‐scale topography when characterizing hydrometeorology and shallow subsurface flow dynamics.

     
    more » « less